Wiener Algebra Methods for Linear Dispersive Bounds: Some Recent (and Not-Recent) Results

Michael Goldberg

University of Cincinnati
Support from Simons Foundation grant #635369

SIAM PD25. November 17, 2025

Wiener L^1 Inversion Lemmas

Theorem (Wiener, 1935)

Suppose
$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}$$
 with $\sum_{k=-\infty}^{\infty} |a_k| < \infty$.

If $f(x) \neq 0$ at every $x \in [-\pi, \pi]$, then

$$\frac{1}{f(x)} = \sum_{k=-\infty}^{\infty} b_k e^{ikx} \text{ with } \sum_{k=-\infty}^{\infty} |b_k| < \infty.$$

Wiener L^1 Inversion Lemmas

Theorem (Wiener, 1935)

Suppose
$$f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}$$
 with $\sum_{k=-\infty}^{\infty} |a_k| < \infty$.

If $f(x) \neq 0$ at every $x \in [-\pi, \pi]$, then

$$\frac{1}{f(x)} = \sum_{k=-\infty}^{\infty} b_k e^{ikx} \text{ with } \sum_{k=-\infty}^{\infty} |b_k| < \infty.$$

Identical theorem on \mathbb{R} :

Theorem

If $\hat{f} \in L^1(\mathbb{R})$ and $1 + f(x) \neq 0$ at every $x \in \mathbb{R}$, then

$$\mathcal{F}\Big(\frac{1}{1+f(x)}-1\Big)\in L^1(\mathbb{R}).$$

Dispersive Bounds

For the Schrödinger equation $iu_t + Hu = 0$ with $H = -\Delta + V(x)$ in \mathbb{R}^n , We would like to have the bound

$$\|e^{itH}P_{ac}(H)u_0\|_{L^{\infty}} \lesssim |t|^{-n/2}\|u_0\|_{L^1}.$$
 (*)

Question: What short-range condition on V is sufficient?

Dispersive Bounds

For the Schrödinger equation $iu_t + Hu = 0$ with $H = -\Delta + V(x)$ in \mathbb{R}^n , We would like to have the bound

$$\|e^{itH}P_{ac}(H)u_0\|_{L^{\infty}} \lesssim |t|^{-n/2}\|u_0\|_{L^1}.$$
 (*)

Question: What short-range condition on V is sufficient?

Multiplication by V(x) should be compact relative to $-\Delta$, so $V(x) \sim \frac{1}{|x|^2}$ is critical scaling.

Dispersive Bounds

For the Schrödinger equation $iu_t + Hu = 0$ with $H = -\Delta + V(x)$ in \mathbb{R}^n , We would like to have the bound

$$\|e^{itH}P_{ac}(H)u_0\|_{L^{\infty}} \lesssim |t|^{-n/2}\|u_0\|_{L^1}.$$
 (*)

Question: What short-range condition on V is sufficient?

Multiplication by V(x) should be compact relative to $-\Delta$, so $V(x) \sim \frac{1}{|x|^2}$ is critical scaling.

In fact, (*) fails if $V(x) = \frac{-c}{|x|^2}$ for any c > 0. [Planchon-Stalker-(Tahvildar-Zadeh), '03]

For the 1D Schrödinger equation, (*) holds with $(1+|x|)V\in L^1(\mathbb{R})$.

Generic case [G-Schlag, '04],

Zero energy resonance case [Egorova-Kapylova-Marchenko-Teschl, '16]

For the 1D Schrödinger equation, (*) holds with $(1+|x|)V\in L^1(\mathbb{R})$.

Generic case [G-Schlag, '04],

Zero energy resonance case [Egorova-Kapylova-Marchenko-Teschl, '16]

Method: Spectral Calculus of *H*.

For the 1D Schrödinger equation, (*) holds with $(1+|x|)V \in L^1(\mathbb{R})$.

Generic case [G-Schlag, '04],

Zero energy resonance case [Egorova-Kapylova-Marchenko-Teschl, '16]

Method: Spectral Calculus of H.

$$\begin{split} e^{itH}P_{ac}(H) &= \frac{1}{2\pi i} \int_{0}^{\infty} e^{it\lambda} \lim_{\epsilon \to 0} \left(\underbrace{\left(H - (\lambda + i\epsilon)\right)^{-1}}_{R^{+}(\lambda)} - \underbrace{\left(H - (\lambda - i\epsilon)\right)^{-1}}_{R^{-}(\lambda)} \right) d\lambda \\ &= \frac{1}{\pi i} \int_{-\infty}^{\infty} e^{it\lambda^{2}} \lambda R^{+}(\lambda^{2}) d\lambda. \end{split}$$

Evaluate
$$\frac{1}{\pi i} \int_{-\infty}^{\infty} (e^{it\lambda^2}) (\lambda R^+(\lambda^2)) d\lambda$$
 using Plancherel identity.

- Fourier transform of $e^{it\lambda^2}$ is bounded by $|t|^{-1/2}$.
- We need Fourier transform of $(\lambda R^+(\lambda^2)(x,y))$ to be in $L^1(\mathbb{R})$ uniformly in x and y.

Evaluate $\frac{1}{\pi i} \int_{-\infty}^{\infty} (e^{it\lambda^2}) (\lambda R^+(\lambda^2)) d\lambda$ using Plancherel identity.

- Fourier transform of $e^{it\lambda^2}$ is bounded by $|t|^{-1/2}$.
- We need Fourier transform of $(\lambda R^+(\lambda^2)(x,y))$ to be in $L^1(\mathbb{R})$ uniformly in x and y.

Formula for $R^+(\lambda^2)(x,y)$ in terms of scattering data.

$$R^{+}(\lambda^{2})(x,y) = \frac{f^{+}(\lambda,x)f^{-}(\lambda,y)}{W(\lambda)}$$

Evaluate $\frac{1}{\pi i} \int_{-\infty}^{\infty} (e^{it\lambda^2}) (\lambda R^+(\lambda^2)) d\lambda$ using Plancherel identity.

- Fourier transform of $e^{it\lambda^2}$ is bounded by $|t|^{-1/2}$.
- We need Fourier transform of $(\lambda R^+(\lambda^2)(x,y))$ to be in $L^1(\mathbb{R})$ uniformly in x and y.

Formula for $R^+(\lambda^2)(x,y)$ in terms of scattering data.

$$R^{+}(\lambda^{2})(x,y) = \frac{f^{+}(\lambda,x)f^{-}(\lambda,y)}{W(\lambda)}$$

[GS] used scattering theory results from [Deift-Trubowitz, 1979] about $\hat{f}^+(\,\cdot\,,x)$, $\hat{f}^-(\,\cdot\,,y)$, and \hat{W} being integrable, and $W(\lambda)$ being nonzero.

[EKMT] refined these results in the resonant case.

The discrete Schrödinger equation on $\ensuremath{\mathbb{Z}}$ has the bound

$$\left\| e^{itH} P_{ac}(H) u_0
ight\|_{\ell^{\infty}} \lesssim |t|^{-1/3} \|u_0\|_{\ell^1}$$

under the same short-range condition $(1+|x|)V\in\ell^1(\mathbb{Z})$.

The discrete Schrödinger equation on $\ensuremath{\mathbb{Z}}$ has the bound

$$\left\| e^{itH} P_{ac}(H) u_0 \right\|_{\ell^{\infty}} \lesssim |t|^{-1/3} \|u_0\|_{\ell^1}$$

under the same short-range condition $(1+|x|)V\in\ell^1(\mathbb{Z})$.

Generic case [Cuccagna-Tarulli '09] Zero energy resonant case [Egorova-Kopylova-Teschl '15]

An Operator-Valued Inversion Theorem

Originated in [Beceanu '11].

Theorem

- If $\hat{f}(\rho)$ is an integrable function with values in B(X) which
 - is norm-continuous with respect to translation,
 - 2 can be approximated by compactly supported functions,

and $I + f(\lambda) \in B(X)$ is invertible for each $\lambda \in \mathbb{R}$, then the Fourier transform of $[I + f(\lambda)]^{-1} - I$ is also an integrable B(X)-valued function.

An Operator-Valued Inversion Theorem

Originated in [Beceanu '11].

Theorem

If $\hat{f}(\rho)$ is an integrable function with values in B(X) which

- is norm-continuous with respect to translation,
- 2 can be approximated by compactly supported functions,

and $I + f(\lambda) \in B(X)$ is invertible for each $\lambda \in \mathbb{R}$, then the Fourier transform of $[I + f(\lambda)]^{-1} - I$ is also an integrable B(X)-valued function.

More than one definition of "integrable B(X)-valued function" is possible. If X is a lattice, and $\hat{f}(\rho)$ are integral operators with kernel $K(\rho, x, y)$, the most versatile definition is to require

$$\int |K(\rho,x,y)| \, d\rho \in B(X).$$

How It Works in 3 Dimensions

For the 3-dimensional Schrödinger equation, one integates $\int_{-\infty}^{\infty} (e^{it\lambda^2}\lambda) R^+(\lambda^2) \, d\lambda$ by parts, then uses the Plancherel identity.

There's a nice operator identity

$$\frac{d}{d\lambda}R^{+}(\lambda^{2}) = \underbrace{[I + R_{0}^{+}(\lambda)^{2}V]^{-1}}_{\text{need F.T. of this to be integrable in }B(L^{\infty})} \underbrace{\frac{d}{d\lambda}R_{0}^{+}(\lambda^{2})}_{\text{Good!}} \underbrace{[I + VR_{0}^{+}(\lambda^{2})]^{-1}}_{\text{need F.T. of this to be integrable in }B(L^{1})}$$

How It Works in 3 Dimensions

In three dimensions, $R_0^+(\lambda^2)V(x,y) = \frac{e^{i\lambda|x-y|}V(y)}{4\pi|x-y|}$.

Theorem (Beceanu-G '12)

The conditions of the inversion theorem hold in $B(L^{\infty})$ for $R_0^+(\lambda^2)V$, and (*) is true provided

$$||V||_{\mathcal{K}} := \sup_{y} \int_{R^3} \frac{|V(x)|}{|x - y|} dx < \infty$$

and V is in the K-closure of $C_c(\mathbb{R}^3)$.

How It Works in 3 Dimensions

In three dimensions, $R_0^+(\lambda^2)V(x,y) = \frac{e^{i\lambda|x-y|}V(y)}{4\pi|x-y|}$.

Theorem (Beceanu-G '12)

The conditions of the inversion theorem hold in $B(L^{\infty})$ for $R_0^+(\lambda^2)V$, and (*) is true provided

$$||V||_{\mathcal{K}} := \sup_{y} \int_{R^3} \frac{|V(x)|}{|x - y|} dx < \infty$$

and V is in the K-closure of $C_c(\mathbb{R}^3)$.

Actually, condition (1) only holds for $(R_0^+(\lambda^2)V)^k$ for some large k. But that's good enough.

For the polyharmonic Schrödinger equation with $H=(-\Delta)^m+V(x)$, the main dispersive bounds should be

$$\|e^{itH}P_{ac}(H)u_0\|_{L^{\infty}} \lesssim |t|^{-n/2m}\|u_0\|_{L^1}$$
 (*2)

$$\left\| H^{\frac{(m-1)n}{2m}} e^{itH} P_{ac}(H) u_0 \right\|_{L^{\infty}} \lesssim |t|^{-n/2} \|u_0\|_{L^1}$$
 (*3)

and the critical scaling should be $V(x) \sim \frac{1}{|x|^{2m}}$.

For the polyharmonic Schrödinger equation with $H = (-\Delta)^m + V(x)$, the main dispersive bounds should be

$$\|e^{itH}P_{ac}(H)u_0\|_{L^{\infty}} \lesssim |t|^{-n/2m}\|u_0\|_{L^1}$$
 (*2)

$$\left\| H^{\frac{(m-1)n}{2m}} e^{itH} P_{ac}(H) u_0 \right\|_{L^{\infty}} \lesssim |t|^{-n/2} \|u_0\|_{L^1}$$
 (*3)

and the critical scaling should be $V(x) \sim rac{1}{|x|^{2m}}.$

Theorem (Erdogan-G-Green '25)

Estimates (*2) and (*3) hold in \mathbb{R}^n , $2m < n \le 4m-1$ provided

$$||V||_{\mathcal{K}^{n-2m}} := \sup_{y} \int \frac{|V(x)|}{|x-y|^{n-2m}} dx < \infty$$

and V is in the K^{n-2m} -closure of $C_c(\mathbb{R}^n)$.

Reasons for the restricted range of n:

- If $n \leq 2m$, then $R_0^+(\lambda^{2m})$ is unbounded as $\lambda \to 0$.
- If n > 4m-1, then $R_0^+(\lambda^{2m})$ is unbounded as $\lambda \to \infty$.

Reasons for the restricted range of n:

- If $n \leq 2m$, then $R_0^+(\lambda^{2m})$ is unbounded as $\lambda \to 0$.
- If n > 4m-1, then $R_0^+(\lambda^{2m})$ is unbounded as $\lambda \to \infty$.

Additional challenges:

- When m > 1, you can't do too much Fourier analysis on $(-\infty, \infty)$ because $R_0^+(\lambda^{2m})$ grows exponentially as $\lambda \to -\infty$.
- The ideal number of times to integrate by parts is $\frac{n-1}{2}$. In even dimensions you have to integrate by parts "one time too many."

An Approach to Low Dimensions

The 1-dimensional Schrödinger equation (m = 1, n = 1) falls outside the range $2m < n \le 4m - 1$ specified above.

Never the less, [Hill '20] recovered all the results of [GS] and [EKMT] using an operator-valued inversion argument. The challenges here are:

- $R_0^+(\lambda^2)$ has a rank-1 singularity at $\lambda = 0$.
- After modifying the resolvent to remove the singularity, condition (2) still fails.

Magnetic Schrödinger Operators

The magnetic Schrödinger operator

$$H = -\Delta + \underbrace{i(\vec{A}(x) \cdot \nabla + \nabla \cdot \vec{A}(x)) + V(x)}_{L}$$

has resisted most attempts to prove $L^1 o L^\infty$ dispersive bounds.

[Beceanu-Kwon, preprint '24] succeeded for a class of potentials in \mathbb{R}^3 . The perennial challenge is that $\nabla R_0^+(\lambda^2)$ grows like $O(\lambda)$.

Magnetic Schrödinger Operators

The magnetic Schrödinger operator

$$H = -\Delta + \underbrace{i(\vec{A}(x) \cdot \nabla + \nabla \cdot \vec{A}(x)) + V(x)}_{L}$$

has resisted most attempts to prove $L^1 \to L^\infty$ dispersive bounds.

[Beceanu-Kwon, preprint '24] succeeded for a class of potentials in \mathbb{R}^3 . The perennial challenge is that $\nabla R_0^+(\lambda^2)$ grows like $O(\lambda)$.

Their strategy can be summarized as:

- Compute the first $LR_0^+(\lambda^2)$ term with ad-hoc integration by parts.
- ② Consider $[I + LR_0^+(\lambda^2)LR_0^+(\lambda^2)]^{-1}$ by pushing both gradients onto the intermediate variable, where it can be integrated away.
- **3** Deal with all the local integrability problems of $D^2R_0^+(\lambda^2)$.

2-Dimensional Schrödinger Is Stubborn

We can work with scaling-critical potentials in $\mathbb R$ and $\mathbb R^3$. Why not $\mathbb R^2$?

The perennial challenges seem to be:

- The rank-1 singularity of $R_0^+(\lambda^2)$ is of $\log(\lambda)$ type. That's harder to remove gracefully than a simple $\frac{1}{\lambda}$ pole.
- Integrating by parts even once is too much, most of the time.

2-Dimensional Schrödinger Is Stubborn

We can work with scaling-critical potentials in $\mathbb R$ and $\mathbb R^3$. Why not $\mathbb R^2$?

The perennial challenges seem to be:

- The rank-1 singularity of $R_0^+(\lambda^2)$ is of $\log(\lambda)$ type. That's harder to remove gracefully than a simple $\frac{1}{\lambda}$ pole.
- Integrating by parts even once is too much, most of the time.

Goal: Get a theorem in time for PD27?